Strong Normalization of Herbelin's Explicit Substitution Calculus with Substitution Propagation

نویسندگان

  • Roy Dyckhoff
  • Christian Urban
چکیده

Herbelin presented (at CSL'94) a simple sequent calculus for minimal implicational logic, extensible to full rst-order intuitionistic logic, with a complete system of cut-reduction rules which is both con uent and strongly normalising. Some of the cut rules may be regarded as rules to construct explicit substitutions. He observed that the addition of a cut permutation rule, for propagation of such substitutions, breaks the proof of strong normalisation; the implicit conjecture is that the rule may be added without breaking strong normalisation. We prove this conjecture, thus showing how to model beta-reduction in his calculus (extended with rules to allow cut permutations).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Direct Proof of Strong Normalization for an Extended Herbelin?s Calculus

Herbelin presented (at CSL’94) an explicit substitution calculus with a sequent calculus as a type system, in which reduction steps correspond to cut-elimination steps. The calculus, extended with some rules for substitution propagation, simulates β-reduction of ordinary λcalculus. In this paper we present a proof of strong normalization for the typable terms of the calculus. The proof is a dir...

متن کامل

A Resource Aware Computational Interpretation for Herbelin's Syntax

We investigate a new computational interpretation for an intuitionistic focused sequent calculus which is compatible with a resource aware semantics. For that, we associate to Herbelin’s syntax a type system based on non-idempotent intersection types, together with a set of reduction rules –inspired from the substitution at a distance paradigm– that preserves (and decreases the size of) typing ...

متن کامل

On strong normalization of explicit substitution calculi

We present a counterexample to the strong normalization—also called termination—of the underlying calculus of explicit substitution of λτ . This problem was open.

متن کامل

An Isomorphism Between Cut-Elimination Procedure and Proof Reduction

This paper introduces a cut-elimination procedure of the intuitionistic sequent calculus and shows that it is isomorphic to the proof reduction of the intuitionistic natural deduction with general elimination and explicit substitution. It also proves strong normalization and Church-Rosser property of the cut-elimination procedure by projecting the sequent calculus to the natural deduction with ...

متن کامل

Simple Proofs of Characterizing Strong Normalization for Explicit Substitution Calculi

We present a method of lifting to explicit substitution calculi some characterizations of the strongly normalizing terms of λ-calculus by means of intersection type systems. The method is first illustrated by applying to a composition-free calculus of explicit substitutions, yielding a simpler proof than the previous one by Lengrand et al. Then we present a new intersection type system in the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Log. Comput.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2003